Calculus of tangent sets and derivatives of set-valued maps under metric subregularity conditions

نویسندگان

  • Marius Durea
  • Radu Strugariu
چکیده

In this paper we intend to give some calculus rules for tangent sets in the sense of Bouligand and Ursescu, as well as for corresponding derivatives of set-valued maps. Both first and second order objects are envisaged and the assumptions we impose in order to get the calculus are in terms of metric subregularity of the assembly of the initial data. This approach is different from those used in alternative recent papers in literature and allows us to avoid compactness conditions. A special attention is paid for the case of perturbation set-valued maps which appear naturally in optimization problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone

In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.

متن کامل

Regularity and Conditioning in the Variational Analysis of Solution Mappings

Concepts of conditioning have long been important in numerical work on solving systems of equations, but in recent years attempts have been made to extend them to feasibility conditions, optimality conditions, complementarity conditions and variational inequalities, all of which can be posed as solving “generalized equations” for set-valued mappings. Here, the conditioning of such generalized e...

متن کامل

METRIC SUBREGULARITY OF COMPOSITION SET-VALUED MAPPINGS WITH APPLICATIONS TO FIXED POINT THEORY by

In this paper we underline the importance of the parametric subregularity property of setvalued mappings, de…ned with respect to …xed sets. We show that this property appears naturally for some very simple mappings which play an important role in the theory of metric regularity. We prove a result concerning the preservation of metric subregularity at generalized compositions. Then we obtain, on...

متن کامل

Entropy of a semigroup of maps from a set-valued view

In this paper, we introduce a new entropy-like invariant, named Hausdorff metric entropy, for finitely generated semigroups acting on compact metric spaces from a set-valued view and study its properties. We establish the relation between Hausdorff metric entropy and topological entropy of a semigroup defined by Bis. Some examples with positive or zero Hausdorff metric entropy are given. Moreov...

متن کامل

Hölder Metric Subregularity with Applications to Proximal Point Method

This paper is mainly devoted to the study and applications of Hölder metric subreg-ularity (or metric q-subregularity of order q ∈ (0, 1]) for general set-valued mappings between infinite-dimensional spaces. Employing advanced techniques of variational analysis and generalized differentiation, we derive neighborhood and pointbased sufficient conditions as well as necessary conditions for q-metr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Global Optimization

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2013